
Dependency Injection (DI)
with Dry::Container

Oleksandr Polieno Ruby Tuesday #39

https://www.meetup.com/bangkok-rb/events/289349252/


Build software that is easy to change!

Reduce mental load Reduce fear of change

SOLID DI TDD DDD XP



Single Responsibility (SOLID)

Create pressure in the fuel system Store fuel



Interface Segregation (SOLID)

So you are an engine? There is a fuel pump for you!



Dependency Inversion (SOLID)

I need an I need a Toyota 2JZGTE!

I am an 



Inversion of Control (IoC)

I’ll take Toyota 2JZGTE engine
Here is Toyota 2JZGTE engine



Inheritance vs Composition
class BaseCar class BaseCarWithEngine < BaseCar

🚫

class Engine class Car

✅



Coupling

Single Responsibility

Interface Segregation



Decouple

Benefits:

- Can clearly see all the 
dependencies

- Easier to change (each object 
and the entire app)

- Easies to test (can pass a fake 
object of mock as dependency, 
not need to patch)

Inversion of Control

Dependency Inversion



Dependency Locator (Container)



TODO List App example

The App on GitHub Dry::Container

https://github.com/nanvel/slides-di
https://dry-rb.org/gems/dry-container/0.7/


Using Container inside a framework

Using Container with Django example

Providers

https://python-dependency-injector.ets-labs.org/examples/django.html
https://python-dependency-injector.ets-labs.org/providers/index.html#

