
13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 1/16

slides-async (/github/nanvel/slides-async/tree/master)
/   async_talk.ipynb (/github/nanvel/slides-async/tree/master/async_talk.ipynb)

A Brief History of Async

Open in nbviewer (https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb)

ThaiPy#85 2022-11-10

Oleksandr Polieno (https://github.com/nanvel)

Plan:

Parallelism and concurrency
Why do we need async, pros/cons
Event-driven io: from callbacks to async
IOLoop
Coroutines
async/await syntax
Overview

Async - a first-class citizen in Python that simplifies concurrency implementation in a single thread.

Parallelism
Distribute work across multiple computers:

https://nbviewer.org/github/nanvel/slides-async/tree/master
https://nbviewer.org/github/nanvel/slides-async/tree/master/async_talk.ipynb
https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb
https://github.com/nanvel


13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 2/16

A single computer:

Using multiple CPU cores:



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 3/16

The Python Global Interpreter Lock (GIL) is a lock that allows only one thread to hold the control of the
python interpreter.

Concurrency
Concurrency == simulating parallelism by switching context.

Executing multiple tasks at the same time but not necessarily simultaneously.

Sequential execution

In [40]:

import httpx 

def job(n): 
   print(f"--- request {n} sent") 
   httpx.get(f"https://example.com/{n}") 
   print(f"--- response {n} received") 

In [41]:

%%time

job(1) 
job(2) 

Threads
A thread is an execution context, which is all the information a CPU needs to execute a stream of
instructions.

Switching context every sys.getswitchinterval() (5ms default)

--- request 1 sent 
--- response 1 received 
--- request 2 sent 
--- response 2 received 
CPU times: user 47.7 ms, sys: 7.25 ms, total: 54.9 ms 
Wall time: 2.43 s 



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 4/16

In [1]:

import sys 

print(sys.getswitchinterval()) 

In [43]:

%%time

from functools import partial 
from threading import Thread 

thread_1 = Thread(target=partial(job, n=1)) 
thread_2 = Thread(target=partial(job, n=2)) 

thread_1.start() 
thread_2.start() 

thread_1.join() 
thread_2.join() 

Async (cooperative multitasking with coroutines)
Concurrency implementation that uses a single thread.

Parts of an application cooperate to switch tasks explicitly at optimal times.

In [44]:

async def ajob(client, n): 
   print(f"--- request {n} sent") 
   await client.get(f"https://example.com/{n}") 
   print(f"--- response {n} received") 

0.005 

--- request 1 sent 
--- request 2 sent 
--- response 1 received 
--- response 2 received 
CPU times: user 37.3 ms, sys: 14.2 ms, total: 51.5 ms 
Wall time: 1.09 s 



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 5/16

In [47]:

import asyncio 
import time 

async def amain(): 
   async with httpx.AsyncClient() as client: 
       await asyncio.gather( 
           ajob(client=client, n=1), 
           ajob(client=client, n=2) 
       ) 

start = time.time() 
await amain() 
print(time.time() - start) 

Only one thread can be active inside a process at a time. Only one async task can be active inside a
thread at a time.

Why do we need async?

--- request 1 sent 
--- request 2 sent 
--- response 1 received 
--- response 2 received 
0.8680598735809326 



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 6/16

Cons of threads:

threads are heavier
the code has to be thread-safe
switching is not under our control (*)

Cons of async:

special syntax (steeper learning curve)
need ioloop to execute
no blocking code allowed (*)

Timeline

1991 - The first python release
2001 - Simple generators (PEP 255 (https://peps.python.org/pep-0255/))
2002 - Twisted - event driven networking engine
2005

Python 2.5
Coroutines via enhanced generators (PEP 342 (https://peps.python.org/pep-0342/))

2008
Python 2.6
Python 3.0

2009 - Tornado opensourced by Facebook (developed by FriendFeed)
2010 - Python 2.7
2012

Python 3.3
proposed to make Tulip/asyncio a part of stdlib (the Tulip project is the asyncio module for
Python)
yield from : Syntax for Delegating to a Subgenerator (PEP 380 (https://peps.python.org/pep-

0380/) - 2009)
return value  = raise StopIteration(value)  in generators

2014
Python 3.4
asyncio is a part of stdlib

2015
Python 3.5
async/await syntax (native coroutines) (PEP 492 (https://peps.python.org/pep-0492/))

2016
Python 3.6
Asynchronous generators (PEP 525 (https://peps.python.org/pep-0525/))
Asynchronous comprehensions (PEP 530 (https://peps.python.org/pep-0530/))

2018
Python 3.7
support for generator-based coroutines is deprecated
(https://docs.python.org/3.7/library/asyncio-task.html#generator-based-coroutines) and is
scheduled for removal in Python 3.10
FastAPI first release
Tornado integration with asyncio by default (Tornado IOLoop is a wrapper around asyncio.ioloop)

2021 - Python 3.10

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0530/
https://docs.python.org/3.7/library/asyncio-task.html#generator-based-coroutines


13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 7/16

From callbacks to async

Synchronous

In [ ]:

from tornado.httpclient import HTTPClient 

def synchronous_fetch(url): 
   http_client = HTTPClient() 
   response = http_client.fetch(url) 
   return response.body 

With callbacks

In [ ]:

from tornado.httpclient import AsyncHTTPClient

def asynchronous_fetch_callbacks(url, callback): 
   http_client = AsyncHTTPClient() 

   def handle_response(response): 
       callback(response.body) 

   http_client.fetch(url, callback=handle_response) 

AsyncHTTPClient().fetch()  is not blocking the function.

With Future



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 8/16

In [ ]:

from tornado.concurrent import Future 
from tornado.httpclient import AsyncHTTPClient

def asynchronous_fetch_future(url): 
   http_client = AsyncHTTPClient() 
   my_future = Future() 
   fetch_future = http_client.fetch(url) 

   def on_fetch(f): 
       my_future.set_result(f.result().body) 

   fetch_future.add_done_callback(on_fetch) 
   return my_future 

With Tornado gen  (generator based coroutine)
Can be used in Python 2.5+.

In [ ]:

from tornado import gen 
from tornado.httpclient import AsyncHTTPClient

@gen.coroutine 
def asynchronous_fetch_gen(url): 
   http_client = AsyncHTTPClient() 
   response = yield http_client.fetch(url) 
   raise gen.Return(response.body) 

yield from  and return  for generator based coroutines



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 9/16

In [ ]:

@asyncio.coroutine 
def asynchronous_fetch_gen(url): 
   http_client = AsyncHTTPClient() 
   response = yield http_client.fetch(url) 
   return response.body 

@asyncio.coroutine 
def amain(): 
   result = yield from asynchronous_fetch_gen('https://example.com') 
   return result 

yield from  and return  support was added in Python 3.3 (PEP 380 – Syntax for Delegating to a
Subgenerator (https://peps.python.org/pep-0380/)).

With async / await  (native coroutine)

In [ ]:

from tornado.httpclient import AsyncHTTPClient

async def asynchronous_fetch(url): 
   http_client = AsyncHTTPClient() 
   response = await http_client.fetch(url) 
   return response.body 

async/await was added in Python 3.5 (PEP 492 – Coroutines with async and await syntax
(https://peps.python.org/pep-0492/)).

Native coroutine ( async def ):

doesn't require await
runtime warning when garbage collected and not awaited
can not use next()  on the coroutine (native coroutine is not a generator)
can not use yield from  inside native coroutines
await validates that the right argument is awaitable

Awaitable:

Coroutine
Future
Task (a subclass of Future)

Future: low-level representation of a future result.

Task: a subclass of Future that knows how to wrap and manage the execution of a coroutine; it is possible
to cancel a task by using the task object. When a coroutine is wrapped in a task - automatically scheduled
to run soon.

await  can be used only inside a coroutine.

async for : supports async iterator, __next__  -> __anext__ .

https://peps.python.org/pep-0380/
https://peps.python.org/pep-0492/


13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 10/16

async with : supports async context managers, __enter__  and __exit__  -> __aenter__  and
__aexit__ .

asyncio.Queue : not thread safe, put/get are coroutines.

IOLoop
ioloop:

run asynchronous tasks and callbacks
perform network IO operations (efficiently handling io events, system events)
run blocking code in a thread or process pool

In [ ]:

# IOLoop Hello World! 

import asyncio 

def hello_world(loop): 
   """A callback to print 'Hello World' and stop the event loop""" 
   print('Hello World') 
   loop.stop() 

loop = asyncio.get_event_loop() 

# Schedule a call to hello_world() 
loop.call_soon(hello_world, loop) 

# Blocking call interrupted by loop.stop() 
try: 
   loop.run_forever() 
finally: 
   loop.close() 



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 11/16

In [ ]:

import asyncio 
import concurrent.futures 

def blocking_io(): 
   # File operations (such as logging) can block the 
   # event loop: run them in a thread pool. 
   with open('/dev/urandom', 'rb') as f: 
       return f.read(100) 

if __name__ == '__main__': 
   ioloop = asyncio.get_event_loop() 

   with concurrent.futures.ThreadPoolExecutor() as pool: 
       ioloop.run_until_complete( 
           ioloop.run_in_executor( 
               pool,
               blocking_io 
           ) 
       ) 

   ioloop.close() 

In long-running tasks, we can release IOLoop by calling await asyncio.sleep(0) .

Selectors (https://docs.python.org/3/library/selectors.html)
Allows high-level and efficient I/O multiplexing.

Can be used to wait for I/O readiness notification on multiple file objects.

Based on select (https://docs.python.org/3/library/select.html) that provides access to the select() and
poll() functions available in most operating systems.

https://docs.python.org/3/library/selectors.html
https://docs.python.org/3/library/select.html


13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 12/16

In [ ]:

# https://docs.python.org/3/library/selectors.html 

import selectors
import socket 

sel = selectors.DefaultSelector() 

def accept(sock, mask): 
   conn, addr = sock.accept()  # Should be ready 
   print('accepted', conn, 'from', addr) 
   conn.setblocking(False) 
   sel.register(conn, selectors.EVENT_READ, read) 

def read(conn, mask): 
   data = conn.recv(1000)  # Should be ready 
   if data: 
       print('echoing', repr(data), 'to', conn) 
       conn.send(data)  # Hope it won't block 
   else: 
       print('closing', conn) 
       sel.unregister(conn) 
       conn.close() 

sock = socket.socket() 
sock.bind(('localhost', 1234)) 
sock.listen(100) 
sock.setblocking(False) 
sel.register(sock, selectors.EVENT_READ, accept) 

while True: 
   events = sel.select() 
   for key, mask in events: 
       callback = key.data 
       callback(key.fileobj, mask) 

Generators and coroutines



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 13/16

Generators are able to give up control to the caller without losing their state, with an option to resume the
execution.

In [7]:

import time 

def my_generator(): 
   print('start') 
   yield '1' 
   yield '2' 
   time.sleep(1) 
   yield '3' 

g = my_generator() 
i = next(g) 
print(i) 

for i in g: 
   print(i) 

print(type(g)) 

generator_exp = (i for i in range(3)) 

print(type(generator_exp)) 

A coroutine is a generator function that can both yield values and accept values from the outside.

start 
1 
2 
3 
<class 'generator'> 
<class 'generator'> 



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 14/16

In [14]:

# Generator based coroutine 

def my_generator(): 
   rec = yield "return 1" 
   print(f"Received {rec}") 
   rec = yield "return 2" 
   print(f"Received {rec}") 

g = my_generator() 

print(next(g)) 
print(next(g)) 
print(g.send('data')) 

Code examples

In [ ]:

# running a coroutine 

import asyncio 

async def coro(): 
   await asyncio.sleep(0.5) 

asyncio.run(coro()) 

In [ ]:

# schedules the coroutine in the current loop 
task = asyncio.ensure_future(coro_or_future) 

return 1 
Received None 
return 2 
Received data 

--------------------------------------------------------------------
StopIteration                             Traceback (most recent cal
Cell In [14], line 14 
    12 print(next(g)) 
    13 print(next(g)) 
---> 14 print(g.send('data')) 

StopIteration: 



13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 15/16

In [2]:

# async generator 

import asyncio 

async def gen(): 
   await asyncio.sleep(1) 
   yield 1 
   await asyncio.sleep(1) 
   yield 2 

async for res in gen(): 
   print(res) 

Async generators support was added in Python 3.6 (PEP 525 – Asynchronous Generators
(https://peps.python.org/pep-0525/))

In [ ]:

# async comprehensions 

result = [await fun() for fun in funcs] 
result = {await fun() for fun in funcs} 
result = {fun: await fun() for fun in funcs} 

result = [await fun() for fun in funcs if await smth] 
result = {await fun() for fun in funcs if await smth} 
result = {fun: await fun() for fun in funcs if await smth} 

result = [await fun() async for fun in funcs] 
result = {await fun() async for fun in funcs} 
result = {fun: await fun() async for fun in funcs} 

result = [await fun() async for fun in funcs if await smth] 
result = {await fun() async for fun in funcs if await smth} 
result = {fun: await fun() async for fun in funcs if await smth} 

Async comprehensions support was added in Python 3.6 (PEP 530 – Asynchronous Comprehensions
(https://peps.python.org/pep-0530/))

Overview
asyncio  success:

Growing world connectivity and a request for event-driven networking
A part of stdlib
Unified ioloop interface
Native coroutines and async/await syntax
Wide support

1 
2 

https://peps.python.org/pep-0525/
https://peps.python.org/pep-0530/


13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 16/16


