
13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 1/16

slides-async (/github/nanvel/slides-async/tree/master)
/
async_talk.ipynb (/github/nanvel/slides-async/tree/master/async_talk.ipynb)

A Brief History of Async

Open in nbviewer (https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb)

ThaiPy#85 2022-11-10

Oleksandr Polieno (https://github.com/nanvel)

Plan:

Parallelism and concurrency
Why do we need async, pros/cons
Event-driven io: from callbacks to async
IOLoop
Coroutines
async/await syntax
Overview

Async - a first-class citizen in Python that simplifies concurrency implementation in a single thread.

Parallelism
Distribute work across multiple computers:

https://nbviewer.org/github/nanvel/slides-async/tree/master
https://nbviewer.org/github/nanvel/slides-async/tree/master/async_talk.ipynb
https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb
https://github.com/nanvel

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 2/16

A single computer:

Using multiple CPU cores:

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 3/16

The Python Global Interpreter Lock (GIL) is a lock that allows only one thread to hold the control of the
python interpreter.

Concurrency
Concurrency == simulating parallelism by switching context.

Executing multiple tasks at the same time but not necessarily simultaneously.

Sequential execution

In [40]:

import httpx

def job(n):

 print(f"--- request {n} sent")

 httpx.get(f"https://example.com/{n}")

 print(f"--- response {n} received")

In [41]:

%%time

job(1)

job(2)

Threads
A thread is an execution context, which is all the information a CPU needs to execute a stream of
instructions.

Switching context every sys.getswitchinterval() (5ms default)

--- request 1 sent

--- response 1 received

--- request 2 sent

--- response 2 received

CPU times: user 47.7 ms, sys: 7.25 ms, total: 54.9 ms

Wall time: 2.43 s

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 4/16

In [1]:

import sys

print(sys.getswitchinterval())

In [43]:

%%time

from functools import partial

from threading import Thread

thread_1 = Thread(target=partial(job, n=1))

thread_2 = Thread(target=partial(job, n=2))

thread_1.start()

thread_2.start()

thread_1.join()

thread_2.join()

Async (cooperative multitasking with coroutines)
Concurrency implementation that uses a single thread.

Parts of an application cooperate to switch tasks explicitly at optimal times.

In [44]:

async def ajob(client, n):

 print(f"--- request {n} sent")

 await client.get(f"https://example.com/{n}")

 print(f"--- response {n} received")

0.005

--- request 1 sent

--- request 2 sent

--- response 1 received

--- response 2 received

CPU times: user 37.3 ms, sys: 14.2 ms, total: 51.5 ms

Wall time: 1.09 s

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 5/16

In [47]:

import asyncio

import time

async def amain():

 async with httpx.AsyncClient() as client:

 await asyncio.gather(

 ajob(client=client, n=1),

 ajob(client=client, n=2)

)

start = time.time()

await amain()

print(time.time() - start)

Only one thread can be active inside a process at a time. Only one async task can be active inside a
thread at a time.

Why do we need async?

--- request 1 sent

--- request 2 sent

--- response 1 received

--- response 2 received

0.8680598735809326

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 6/16

Cons of threads:

threads are heavier
the code has to be thread-safe
switching is not under our control (*)

Cons of async:

special syntax (steeper learning curve)
need ioloop to execute
no blocking code allowed (*)

Timeline

1991 - The first python release
2001 - Simple generators (PEP 255 (https://peps.python.org/pep-0255/))
2002 - Twisted - event driven networking engine
2005

Python 2.5
Coroutines via enhanced generators (PEP 342 (https://peps.python.org/pep-0342/))

2008
Python 2.6
Python 3.0

2009 - Tornado opensourced by Facebook (developed by FriendFeed)
2010 - Python 2.7
2012

Python 3.3
proposed to make Tulip/asyncio a part of stdlib (the Tulip project is the asyncio module for
Python)
yield from : Syntax for Delegating to a Subgenerator (PEP 380 (https://peps.python.org/pep-

0380/) - 2009)
return value = raise StopIteration(value) in generators

2014
Python 3.4
asyncio is a part of stdlib

2015
Python 3.5
async/await syntax (native coroutines) (PEP 492 (https://peps.python.org/pep-0492/))

2016
Python 3.6
Asynchronous generators (PEP 525 (https://peps.python.org/pep-0525/))
Asynchronous comprehensions (PEP 530 (https://peps.python.org/pep-0530/))

2018
Python 3.7
support for generator-based coroutines is deprecated
(https://docs.python.org/3.7/library/asyncio-task.html#generator-based-coroutines) and is
scheduled for removal in Python 3.10
FastAPI first release
Tornado integration with asyncio by default (Tornado IOLoop is a wrapper around asyncio.ioloop)

2021 - Python 3.10

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0530/
https://docs.python.org/3.7/library/asyncio-task.html#generator-based-coroutines

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 7/16

From callbacks to async

Synchronous

In []:

from tornado.httpclient import HTTPClient

def synchronous_fetch(url):

 http_client = HTTPClient()

 response = http_client.fetch(url)

 return response.body

With callbacks

In []:

from tornado.httpclient import AsyncHTTPClient

def asynchronous_fetch_callbacks(url, callback):

 http_client = AsyncHTTPClient()

 def handle_response(response):

 callback(response.body)

 http_client.fetch(url, callback=handle_response)

AsyncHTTPClient().fetch() is not blocking the function.

With Future

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 8/16

In []:

from tornado.concurrent import Future

from tornado.httpclient import AsyncHTTPClient

def asynchronous_fetch_future(url):

 http_client = AsyncHTTPClient()

 my_future = Future()

 fetch_future = http_client.fetch(url)

 def on_fetch(f):

 my_future.set_result(f.result().body)

 fetch_future.add_done_callback(on_fetch)

 return my_future

With Tornado gen (generator based coroutine)
Can be used in Python 2.5+.

In []:

from tornado import gen

from tornado.httpclient import AsyncHTTPClient

@gen.coroutine

def asynchronous_fetch_gen(url):

 http_client = AsyncHTTPClient()

 response = yield http_client.fetch(url)

 raise gen.Return(response.body)

yield from and return for generator based coroutines

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 9/16

In []:

@asyncio.coroutine

def asynchronous_fetch_gen(url):

 http_client = AsyncHTTPClient()

 response = yield http_client.fetch(url)

 return response.body

@asyncio.coroutine

def amain():

 result = yield from asynchronous_fetch_gen('https://example.com')

 return result

yield from and return support was added in Python 3.3 (PEP 380 – Syntax for Delegating to a
Subgenerator (https://peps.python.org/pep-0380/)).

With async / await (native coroutine)

In []:

from tornado.httpclient import AsyncHTTPClient

async def asynchronous_fetch(url):

 http_client = AsyncHTTPClient()

 response = await http_client.fetch(url)

 return response.body

async/await was added in Python 3.5 (PEP 492 – Coroutines with async and await syntax
(https://peps.python.org/pep-0492/)).

Native coroutine (async def):

doesn't require await
runtime warning when garbage collected and not awaited
can not use next() on the coroutine (native coroutine is not a generator)
can not use yield from inside native coroutines
await validates that the right argument is awaitable

Awaitable:

Coroutine
Future
Task (a subclass of Future)

Future: low-level representation of a future result.

Task: a subclass of Future that knows how to wrap and manage the execution of a coroutine; it is possible
to cancel a task by using the task object.
When a coroutine is wrapped in a task - automatically scheduled
to run soon.

await can be used only inside a coroutine.

async for : supports async iterator, __next__ -> __anext__ .

https://peps.python.org/pep-0380/
https://peps.python.org/pep-0492/

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 10/16

async with : supports async context managers, __enter__ and __exit__ -> __aenter__ and
__aexit__ .

asyncio.Queue : not thread safe, put/get are coroutines.

IOLoop
ioloop:

run asynchronous tasks and callbacks
perform network IO operations (efficiently handling io events, system events)
run blocking code in a thread or process pool

In []:

IOLoop Hello World!

import asyncio

def hello_world(loop):

 """A callback to print 'Hello World' and stop the event loop"""

 print('Hello World')

 loop.stop()

loop = asyncio.get_event_loop()

Schedule a call to hello_world()

loop.call_soon(hello_world, loop)

Blocking call interrupted by loop.stop()

try:

 loop.run_forever()

finally:

 loop.close()

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 11/16

In []:

import asyncio

import concurrent.futures

def blocking_io():

 # File operations (such as logging) can block the

 # event loop: run them in a thread pool.

 with open('/dev/urandom', 'rb') as f:

 return f.read(100)

if __name__ == '__main__':

 ioloop = asyncio.get_event_loop()

 with concurrent.futures.ThreadPoolExecutor() as pool:

 ioloop.run_until_complete(

 ioloop.run_in_executor(

 pool,
 blocking_io

)

)

 ioloop.close()

In long-running tasks, we can release IOLoop by calling await asyncio.sleep(0) .

Selectors (https://docs.python.org/3/library/selectors.html)
Allows high-level and efficient I/O multiplexing.

Can be used to wait for I/O readiness notification on multiple file objects.

Based on select (https://docs.python.org/3/library/select.html) that provides access to the select() and
poll() functions available in most operating systems.

https://docs.python.org/3/library/selectors.html
https://docs.python.org/3/library/select.html

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 12/16

In []:

https://docs.python.org/3/library/selectors.html

import selectors
import socket

sel = selectors.DefaultSelector()

def accept(sock, mask):

 conn, addr = sock.accept() # Should be ready

 print('accepted', conn, 'from', addr)

 conn.setblocking(False)

 sel.register(conn, selectors.EVENT_READ, read)

def read(conn, mask):

 data = conn.recv(1000) # Should be ready

 if data:

 print('echoing', repr(data), 'to', conn)

 conn.send(data) # Hope it won't block

 else:

 print('closing', conn)

 sel.unregister(conn)

 conn.close()

sock = socket.socket()

sock.bind(('localhost', 1234))

sock.listen(100)

sock.setblocking(False)

sel.register(sock, selectors.EVENT_READ, accept)

while True:

 events = sel.select()

 for key, mask in events:

 callback = key.data

 callback(key.fileobj, mask)

Generators and coroutines

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 13/16

Generators are able to give up control to the caller without losing their state, with an option to resume the
execution.

In [7]:

import time

def my_generator():

 print('start')

 yield '1'

 yield '2'

 time.sleep(1)

 yield '3'

g = my_generator()

i = next(g)

print(i)

for i in g:

 print(i)

print(type(g))

generator_exp = (i for i in range(3))

print(type(generator_exp))

A coroutine is a generator function that can both yield values and accept values from the outside.

start

1

2

3

<class 'generator'>

<class 'generator'>

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 14/16

In [14]:

Generator based coroutine

def my_generator():

 rec = yield "return 1"

 print(f"Received {rec}")

 rec = yield "return 2"

 print(f"Received {rec}")

g = my_generator()

print(next(g))

print(next(g))

print(g.send('data'))

Code examples

In []:

running a coroutine

import asyncio

async def coro():

 await asyncio.sleep(0.5)

asyncio.run(coro())

In []:

schedules the coroutine in the current loop

task = asyncio.ensure_future(coro_or_future)

return 1

Received None

return 2

Received data

--
StopIteration Traceback (most recent cal
Cell In [14], line 14

 12 print(next(g))

 13 print(next(g))

---> 14 print(g.send('data'))

StopIteration:

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 15/16

In [2]:

async generator

import asyncio

async def gen():

 await asyncio.sleep(1)

 yield 1

 await asyncio.sleep(1)

 yield 2

async for res in gen():

 print(res)

Async generators support was added in Python 3.6 (PEP 525 – Asynchronous Generators
(https://peps.python.org/pep-0525/))

In []:

async comprehensions

result = [await fun() for fun in funcs]

result = {await fun() for fun in funcs}

result = {fun: await fun() for fun in funcs}

result = [await fun() for fun in funcs if await smth]

result = {await fun() for fun in funcs if await smth}

result = {fun: await fun() for fun in funcs if await smth}

result = [await fun() async for fun in funcs]

result = {await fun() async for fun in funcs}

result = {fun: await fun() async for fun in funcs}

result = [await fun() async for fun in funcs if await smth]

result = {await fun() async for fun in funcs if await smth}

result = {fun: await fun() async for fun in funcs if await smth}

Async comprehensions support was added in Python 3.6 (PEP 530 – Asynchronous Comprehensions
(https://peps.python.org/pep-0530/))

Overview
asyncio success:

Growing world connectivity and a request for event-driven networking
A part of stdlib
Unified ioloop interface
Native coroutines and async/await syntax
Wide support

1

2

https://peps.python.org/pep-0525/
https://peps.python.org/pep-0530/

13/11/2022, 22:39 Jupyter Notebook Viewer

https://nbviewer.org/github/nanvel/slides-async/blob/master/async_talk.ipynb 16/16

